Abstract

Pathological cardiac remodeling is initially a compensatory attempt to increase cardiac output, but ultimately leads to the development of fibrosis, a form of scarring that contributes to heart failure (HF). In contrast, physiological cardiac remodeling in response to exercise is not associated with the development of fibrosis and typically remains compensatory. Understanding how cardiac fibroblasts (CF), the primary source of extracellular matrix in the heart, respond to pathological and physiological cues might lead to novel approaches to limit the maladaptive effects of pathological cardiac remodeling. We performed RNA sequencing to define genes that are differentially regulated in CF during physiological (swimming) or pathological (pressure overload) remodeling. This study revealed that cardiac expression of the s mall pr oline r ich 2b ( Sprr2b) gene is restricted to CFs and is significantly elevated in disease and lost in exercise. We demonstrate that SPRR2B drives CF proliferation, but not myofibroblast differentiation, in response to pathological cues. SPRR2B facilitates an interaction between MDM2 and USP7, a nuclear deubiquitinase that leads to proteasomal degradation of p53. SPRR2B-USP7-MDM2 complex formation and p53 degradation is at least partially dependent upon phosphorylation of SPRR2B by Src-family NRTKs. SPRR2B thus relieves p53-mediated constraints on cell cycle progression in response to Src-dependent signaling, leading to CF accumulation. Importantly, SPRR2B expression is elevated in cardiac tissue from human HF patients relative to individuals without heart disease and positively correlates with a proliferative, activated gene expression profile in HF patient CF. Treatment of human HF fibroblasts with IGF-1/H 2 O 2 to mimic physiological cues significantly abrogated SPRR2B expression and increased expression of p53-dependent cell cycle checkpoint genes, which correlated with a less activated phenotype. Taken together, this study defines a unique tissue-specific role of Sprr2b in driving pathological CF cell cycle progression that may underlie the development of cardiac fibrosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.