Abstract

We study the smoothness property of a function f with absolutely convergent Fourier series, and give best possible sufficient conditions in terms of its Fourier coefficients to ensure that f belongs either to one of the Lipschitz classes Lip ( α ) and lip ( α ) for some 0 < α ⩽ 1 , or to one of the Zygmund classes Λ ∗ ( 1 ) and λ ∗ ( 1 ) . Our theorems generalize some of those by Boas [R.P. Boas Jr., Fourier series with positive coefficients, J. Math. Anal. Appl. 17 (1967) 463–483] and one by Németh [J. Németh, Fourier series with positive coefficients and generalized Lipschitz classes, Acta Sci. Math. (Szeged) 54 (1990) 291–304]. We also prove a localized version of a theorem by Paley [R.E.A.C. Paley, On Fourier series with positive coefficients, J. London Math. Soc. 7 (1932) 205–208] on the existence and continuity of the derivative of f.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.