Abstract
Membrane-bound acetylcholinesterase (AChE) from mosquito showed the characteristic substrate inhibition of this enzyme, but 105000×g supernatants of freshly extracted enzyme did not. Addition of chaotropic anions, a freeze-thaw cycle and autolysis of the amphiphilic acetylcholinesterase to its non-amphiphilic derivatives resulted in return of the substrate inhibition feature along with an apparent increment in the enzyme activity. These results suggested that the lipidic environment of the mosquito AChE is temporarily perturbed when extracted. The enzyme is probably trapped in non-sedimenting mixtures composed of endogenous amphiphilic molecules. The occurrence of this phenomenon was not affected by the presence of Triton X-100 and other detergents, either alone or in combination with sodium chloride. Freezing in the presence of strong chaotropic anions (perchlorate, iodide and thiocyanate) caused the irreversible inactivation of the mosquito AChE. Crude and incomplete purified fractions of the enzyme were more sensitive than a more purified preparation. With both the purified AChE and the non-purified AChE, amphiphilic AChE was more freeze labile. Freezing at −10°C enhanced inactivation of non-purified fractions. At this temperature, even weak chaotropic anions (fluoride, chloride and nitrate), while in combination with non-ionic detergents that solubilized mosquito AChE efficiently, reduced the enzyme activity of these fractions. In this case, recovery of the enzyme activity by incubation at 25°C was inversely correlated with the effectiveness of the chaotropic anion. Gel filtration failed to show any change in the hydrodynamic radius of the freezing-inactivated AChE. Therefore, this phenomenon is explained as different degrees of denaturation of the enzyme in direct association with the chaotropic strength. Thus, antichaotropic anions, such as sulfate, should improve the stability of the mosquito acetylcholinesterase during extraction, purification and storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular Enzymology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.