Abstract

Cells of an adenosine-resistant clone (AE 1) of S49 mouse lymphoma cells were compared with cells of the parental line with respect to (a) characteristics of nucleoside transport, (b) high affinity binding of the inhibitor of nucleoside transport, nitrobenzylthionisine (NBMPR), and (c) the antiproliferative effects of the nucleoside antibiotics, tubercidin, arabinosyladenine and showdomycin. Rates of inward transport of uridine, thymidine, adenosine, 2′-deoxyadenosine, tubercidin, showdomycin, and arabinosyladenine in AE 1 cells were less than 1% of those in cells of the parental S49 line. The inhibitor of nucleoside transport, NBMPR, reduced rates of inward nucleoside transport in S49 cells to levels comparable to those seen in the transport-defective mutant. S49 cells possessed high affinity sites that bound NBMPR (6.6 · 10 4 sites/cell, K d  0.2 nM), whereas site-specific binding of NBMPR to AE 1 cells was not demonstrable, indicating that loss of nucleoside transport activity in AE 1 cells was accompanied by loss of the high affinity NBMPR binding sites. Relative to S49 cells, AE 1 cells were resistant to the antiproliferative effects of tubercidin and showdomycin, but differences between the two cell lines in sensitivity toward arabinosyladenine were minor, suggesting that nucleoside transport activity was required for cytotoxicity of tubercidin and showdomycin, but not for that of arabinosyladenine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.