Abstract

Hemp dogbane is sensitive to fluroxypyr and tolerant to clopyralid. Absorption, translocation, and metabolism of clopyralid and fluroxypyr were studied in hemp dogbane to determine if differences in these processes could be responsible for differential sensitivity. In addition, the effect of growth stage on herbicide absorption and translocation was evaluated. The14C-herbicides were applied to the adaxial side of a single leaf located near the midpoint of hydroponically cultured plants. Uptake of fluroxypyr was more rapid than clopyralid. At 72 h after treatment (HAT), fluroxypyr and clopyralid absorption was 62 and 38%, respectively. Clopyralid was much more mobile than fluroxypyr, with 75% of the absorbed14C from14C-clopyralid recovered outside the treated leaf compared to only 45% for fluroxypyr 72 HAT. Relative to fluroxypyr, a higher percentage of14C-clopyralid recovered outside the treated leaf translocated acropetally, especially when plants were treated during the vegetative stage. Treatment during the early reproductive stage increased basipetal and reduced acropetal translocation relative to the vegetative stage. Neither herbicide was metabolized rapidly. Approximately 60 and 90% of the recovered14C was attributable to unaltered fluroxypyr and clopyralid, respectively, 72 HAT. Some differences in absorption, translocation, and metabolism between clopyralid and fluroxypyr exist, but they cannot fully account for differential sensitivity of hemp dogbane to these two herbicides. Differences in activity at the target site may be responsible for differential activity of these herbicides on hemp dogbane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.