Abstract

We investigated the effect of exogenous abscisic acid (ABA) application on the transcriptome as well as the phenolic profiles in the skins of Vitis vinifera cv. Cabernet Sauvignon grape berries grown on the vine and cultured in vitro. ABA application rapidly induced the accumulation of anthocyanin and flavonol. Correlatively, the structural genes in the phenylpropanoid and flavonoid pathways, their transcriptional regulators, as well as genes considered to be involved in the acylation and transport of anthocyanin into the vacuole, were upregulated by ABA treatment. The Genechip analysis showed that the ABA treatment significantly up- or downregulated a total of 345 and 1,482 transcripts in the skins of berries grown on the vine and cultured in vitro, respectively. Exogenous ABA modulated the transcripts associated with osmotic responses, stress responses, cell wall modification, auxin and ethylene metabolism and responses, in addition to the induction of anthocyanin biosynthetic genes, and reduced those associated with photosynthesis; approximately half of these transcripts were identical to the previously reported ripening-specific genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.