Abstract
The lateral force exerted when two trains pass each other can adversely affect train safety, and this adverse effect becomes more pronounced as the train speed increases. When trains cross paths in tunnels, the aerodynamics differ from those in open lines due to the restrictive nature of tunnel walls. Utilizing the Renormalization Group (RNG) k-ε turbulence model and the “Mosaic” grid method, this research examines changes in aerodynamic load of the train and ride comfort during a intersection at 400 km/h in a tunnel and contrasts this with conditions at 350 km/h. The results indicate that the change in aerodynamic load on each carriage is more pronounced when the head train of the oncoming train passes than when its tail train passes, with the largest variation observed during the passing of both the head and tail trains. This alteration in aerodynamic load is primarily attributed to the air being pushed in the locomotive area and the negative pressure from the vortex structure between trains. When the speed is increased from 350 km/h to 400 km/h, the aerodynamic load on the train increases by approximately 20 % to 40 %, and the acceleration of the head train grows by 20 % to 50 %. The most noticeable decrease in ride comfort is observed in the head train, with the highest increase in the head train’s Overall Vibration Total Value (OVTV), which rises by 30.1 %.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Tunnelling and Underground Space Technology incorporating Trenchless Technology Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.