Abstract

Single-walled carbon nanotubes (NTs) and single-walled carbon nanotubes modified (NTms) by the room-temperature ionic liquid (IL) 1-octyl, 3-methylimidazolium tetrafluoroborate ([OMIM]BF 4) were added in a 1 wt.% to polystyrene (PS) and processed by compression or injection moulding to obtain PS + NT and PS + NTm, respectively. Friction coefficients and abrasive wear from penetration depth, residual depth and viscoelastic recovery were determined under multiple scratching. The effect of the moulding process, the additives and the sliding direction was studied. Compression moulded PS shows a transition to more severe damage after a critical number of successive passes. Addition of NTs or NTms to compression moulded PS induces a strain hardening effect and reduces friction, residual depth and viscoelastic recovery. Strain hardening is also observed in injection moulded PS with sliding in the longitudinal and random directions, but not in the transverse direction. The scratch resistance of PS + NTm depends on sliding direction. The lowest friction coefficient and residual depth values, and the highest viscoelastic recovery were found for injection moulded PS + NTm, in the sliding direction parallel to injection flow. Mechanisms of surface damage are discussed upon scanning electron microscopy (SEM), focused ion beam-field emission scanning electron microscopy (FIB-FESEM), 3D surface topography, surface roughness and profilometry observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.