Abstract

Diamond and diamond-based coatings have long been studied for their exceptional properties. Although a great deal of research has been carried out in this field, little is known about their tribological wear behavior. In the present work, diamond reinforced composite (DRC) coatings of varying diamond content was deposited on mild steel substrates using both oxy-acetylene (OA) and high velocity oxy fuel (HVOF) thermal spraying techniques. The high stress abrasive wear behavior of these coatings is studied by performing two body abrasion tests for varying experimental parameters. It is observed that the HVOF-sprayed coatings suffered abrasion at a relatively low wear rate. The reasons for variations observed in the wear rate as a function of displacement during abrasion and grit size could be attributed to the deterioration of abrasive particles and the particle size effect respectively. While the disparity in the wear rates with respect to composition of the coatings was primarily controlled by the diamond content in the coating. The abrasive wear mechanism was found to be the same in both the coatings except that the coating deposited by HVOF spray technique, offered better abrasion resistance and therefore abraded at a slower rate. This is possibly due to lower porosity in the coating and higher bond strength between reinforced diamond particulates and the bronze matrix in HVOF-sprayed specimens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.