Abstract

Many studies have demonstrated that pulsed ultrasound combined with circulating microbubbles can permeate the blood-brain barrier in a reversible manner. In 2012, our group demonstrated that the BBB remains permeable to small MRI contrast agents up to 24 h after ultrasound application and also that this duration was dependent on nanoparticle size. We derived a simple theoretical model explaining these observations (Marty et al 2012 J. Cereb. Blood Flow Metab. 32 1948–58). However, in this original paper the expression of the BBB closure time (t1/2) as a function of the size of delivered contrast agents (dH) could not be mathematically derived from the model but rather from a guessed function that is fit to the numerical solution of the model. In this context, the two numeric parameters of this fitting function could not be related to the other physical parameters of the model. Here, we present a formal solution, finding the same expression of t1/2 already published and linking t1/2 to relevant physical variables such as the molecular hydrodynamic diameter dH, the BBB closure rate k and the standard deviation of the initial BBB gap sizes distribution σ0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.