Abstract

We consider in this paper a microscopic model (that is, a system of three reaction–diffusion equations) incorporating the dynamics of handling and searching predators, and show that its solutions converge when a small parameter tends to 0 towards the solutions of a reaction–cross diffusion system of predator–prey type involving a Holling-type II or Beddington–DeAngelis functional response. We also provide a study of the Turing instability domain of the obtained equations and (in the case of the Beddington–DeAngelis functional response) compare it to the same instability domain when the cross diffusion is replaced by a standard diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.