Abstract
Bilateral adrenal hyperplasias (BAHs) may be caused by mutations of genes that code for molecules that participate in cAMP signaling. Little is known about cAMP signaling in adrenal lesions associated with ACTH-independent Cushing syndrome (AICS) that do not harbor mutations in known genes. We assessed the cAMP-signaling pathway by enzymatic and molecular studies. Samples from 27 patients (ages 5-60 years) were studied and compared with normal adrenocortical tissue (n=4) and aldosterone-producing adenomas (APA, n=5). All samples were sequenced for GNAS, PRKAR1A, PDE11A, and PDE8B sequencing defects. cAMP levels and binding, protein kinase A, and phosphodiesterase (PDE) activities were assayed. Immunohistochemistry was used for certain studies and the phosphorylation status of CREB was studied. A total of 36 samples from patients were used. Cortisol-producing adenomas (CPAs) and other lesions that were GNAS, PRKAR1A, PDE11A, and PDE8B gene mutation-negative were compared with PRKAR1A mutation-positive lesions, normal tissue, and APAs; abnormalities of the cAMP-signaling pathway were found in both BAHs and CPAs. Interestingly, mutation-negative CPAs had significantly decreased PDE activity. Lesions of the adrenal associated with AICS, independently of their GNAS, PRKAR1A, PDE11A, and PDE8B mutation status, have functional abnormalities of cAMP signaling. It is probable that epigenetic events or additional defects of genes involved in this pathway are responsible for this phenomenon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.