Abstract

Costal cartilage is much understudied compared to the load bearing cartilages. Abnormally grown costal cartilages are associated with the inherited chest wall deformities pectus excavatum and pectus carinatum resulting in sunken or pigeon chest respectively. A lack of understanding of the ultrastructural and molecular biology properties of costal cartilage is a major confounder in predicting causes and outcomes of these disorders. Due to the avascular nature of cartilage, chondrocytes metabolize glycolytically, producing an acidic environment. During physical activity hydrogen ions move within cartilage driven by compressive forces, thus at any one time, chondrocytes experience transient changes in pH. A variety of ion channels on chondrocytes plasma membrane equip them to function in the rapidly changing conditions they experience. In this paper we describe reduced expression of the ASIC2 gene encoding the acid sensing ion channel isoform 2 (previously referred to as ACCN1 or ACCN) in patients with chest wall deformities. We hypothesized that chondrocytes from these patients cannot respond normally to changes in pH that are an integral part of the biology of this tissue. Activation of ASICs indirectly creates a cascade ultimately dependent on intracellular calcium transients. The objective of this paper was to compare internal calcium signaling in response to external pH changes in costal chondrocytes from patients with chest wall deformities and healthy individuals. Although the molecular mechanism through which chondrocytes are regulated by acidosis remains unknown, we observed reduced amplitudes of calcium rise in patient chondrocytes exposed to low pH that become further impaired upon repeat exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.