Abstract

Pathological maxillary sinus would affect implant treatment and even result in failure of maxillary sinus lift and implant surgery. However, the maxillary sinus abnormalities are challenging to be diagnosed through CBCT images, especially for young dentists or dentists in grassroots medical institutions without systematical education of general medicine. To develop a deep-learning-based screening model incorporating object detection and 'straight-forward' classification strategy to screen out maxillary sinus abnormalities on CBCT images. The large area of background noise outside maxillary sinus would affect the generalisation and prediction accuracy of the model, and the diversity and imbalanced distribution of imaging manifestations may bring challenges to intellectualization. Thus we adopted an object detection to limit model's observation zone and 'straight-forward' classification strategy with various tuning methods to adapt to dental clinical need and extract typical features of diverse manifestations so that turn the task into a 'normal-or-not' classification. We successfully constructed a deep-learning model consist of well-trained detector and diagnostor module. This model achieved ideal AUROC and AUPRC of 0.953 and 0.887, reaching more than 90% accuracy at optimal cut-off. McNemar and Kappa test verified no statistical difference and high consistency between the prediction and ground truth. Dentist-model comparison test showed the model's statistically higher diagnostic performance than dental students. Visualisation method confirmed the model's effectiveness in region recognition and feature extraction. The deep-learning model incorporating object detection and straightforward classification strategy could achieve satisfying predictive performance for screening maxillary sinus abnormalities on CBCT images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.