Abstract
The purpose of this study was to determine in vivo myocardial energy metabolism and function in a nutritional model of type 2 diabetes. Wistar rats rendered insulin-resistant and mildly hyperglycemic, hyperinsulinemic, and hypertriglyceridemic with a high-fructose/high-fat diet over a 6-wk period with injection of a small dose of streptozotocin (HFHFS) and control rats were studied using micro-PET (microPET) without or with a euglycemic hyperinsulinemic clamp. During glucose clamp, myocardial metabolic rate of glucose measured with [(18)F]fluorodeoxyglucose ([(18)F]FDG) was reduced by approximately 81% (P < 0.05), whereas myocardial plasma nonesterified fatty acid (NEFA) uptake as determined by [(18)F]fluorothia-6-heptadecanoic acid ([(18)F]FTHA) was not significantly changed in HFHFS vs. control rats. Myocardial oxidative metabolism as assessed by [(11)C]acetate and myocardial perfusion index as assessed by [(13)N]ammonia were similar in both groups, whereas left ventricular ejection fraction as assessed by microPET was reduced by 26% in HFHFS rats (P < 0.05). Without glucose clamp, NEFA uptake was approximately 40% lower in HFHFS rats (P < 0.05). However, myocardial uptake of [(18)F]FTHA administered by gastric gavage was significantly higher in HFHFS rats (P < 0.05). These abnormalities were associated with reduced Glut4 mRNA expression and increased Cd36 mRNA expression and mitochondrial carnitine palmitoyltransferase 1 activity (P < 0.05). HFHFS rats display type 2 diabetes complicated by left ventricular contractile dysfunction with profound reduction in myocardial glucose utilization, activation of fatty acid metabolic pathways, and preserved myocardial oxidative metabolism, suggesting reduced myocardial metabolic efficiency. In this model, increased myocardial fatty acid exposure likely occurs from circulating triglyceride, but not from circulating plasma NEFA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Endocrinology and Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.