Abstract

This study tests the hypothesis that the basal ganglia are involved in optimizing postural responses for changes in perturbation direction and stance width. We compared the patterns of horizontal and vertical ground reactive forces under each leg in response to eight directions of surface translation in Parkinson's disease (PD) subjects and age-matched control subjects standing with both narrow and wide stance. Although passive reactive forces were larger, active forces were weaker and in abnormal directions for subjects with PD. Unlike the control subjects, who corrected their postural equilibrium in response to lateral and diagonal-lateral perturbations primarily with their loaded limbs, the PD subjects used both legs more symmetrically to recover equilibrium. PD subjects also did not change the magnitude or direction of reactive forces when initial stance width changed. These results support the hypothesis that the basal ganglia are important for optimizing automatic postural response patterns for changes in perturbation direction and for initial stance conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.