Abstract

Electrothermal plasma sources operating in the confined controlled arc discharge regime produce heat fluxes in the range expected for hard disruptions in future large tokamaks. The radiative heat flux produced inside of the capillary discharge channel is from the formed high density (1023–1027/m3) plasma with heat fluxes of up to 125 GW/m2 over a period of 100 μs, making such sources excellent simulators for ablation studies of plasma-facing materials in tokamaks during hard disruptions. Graphite, beryllium, lithium, stainless steel, tungsten, copper, and molybdenum are among the materials proposed for use in fusion reactors. Computational experiments with the ETFLOW code using heat fluxes between 10 and 125 GW/m2 have shown low total erosion for the low-z materials Li, Be and C and higher erosion for high-z materials Fe, Cu, Mo and W. The time rate of material erosion for various ranges of heat fluxes shows increased erosion with time evolution over the 150 μs pulse length of the simulated disruption event. At the highest values of simulated heat flux, low-z materials were found to ablate almost identically. At all simulated values of heat flux, the ablation of high-z materials correlated positively with the z-number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.