Abstract

The iron isotope composition of sedimentary pyrite has been proposed as a potential proxy to trace microbial metabolism and the redox evolution of the oceans. We demonstrate that Fe isotope fractionation accompanies abiotic pyrite formation in the absence of Fe(II) redox change. Combined fractionation factors between Fe(II)(aq), mackinawite, and pyrite permit the generation of pyrite with Fe isotope signatures that nearly encapsulate the full range of sedimentary δ(56)Fe(pyrite) recorded in Archean to modern sediments. We propose that Archean negative Fe isotope excursions reflect partial Fe(II)(aq) utilization during abiotic pyrite formation rather than microbial dissimilatory Fe(III) reduction. Late Proterozoic to modern sediments may reflect greater Fe(II)(aq) utilization and variations in source composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.