Abstract

In bone tissue reconstruction, the use of engineered constructs created by mesenchymal stem cells (MSCs) that differentiate and proliferate into three-dimensional porous scaffolds is an appealing alternative to autologous and heterologous bone grafts. Scaffolds considered in this work are represented by polyurethane (PU) foams. Two PU foams (EC-1 and EC-2) were synthesized and characterized for morphology, mechanical properties and in vitro interaction with the osteoblast-like cell line MG63 and MSCs from human bone marrow. EC-1 and EC-2 showed similar densities (0.20 g cm −3) with different morphologies: EC-1 showed a more homogeneous pore size (average Φ = 691 μm) and distribution, with a 35% open porosity, whereas EC-2 evidenced a wide range of pore dimension, with an average pore size of 955 μm and a 74% open porosity. The compressive properties of the two foams were similar in the dry condition and both showed a strong decrease in the wet condition. In vitro tests showed good MG63 cell proliferation, as confirmed by the results of the MTT assay and scanning electron microscopy (SEM) observations, with a higher cell viability on EC-2 foam 7 days post-seeding. In the experiments with MSCs, SEM observations showed the presence of an inorganic phase deposition starting day 7 onto EC-1, day 14 onto EC-2. The inorganic particles (CaP) deposition was much more evident onto the pore surface of both foams at day 30, indicating good differentiation of MSCs into osteoblasts. Both PU foams therefore appeared to stimulate cell adhesion and proliferation in vitro, sustaining the MSCs’ growth and differentiation into osteoblasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.