Abstract
Aberration-corrected scanning transmission electron microscopes are able to form electron beams smaller than 100 pm, which is about half the size of an average atom. Probing materials with such beams leads to atomic-resolution images, electron energy loss and energy-dispersive X-ray spectra obtained from single atomic columns and even single atoms, and atomic-resolution elemental maps. We review briefly how such electron beams came about, and show examples of applications. We also summarize recent developments that are propelling aberration-corrected scanning transmission electron microscopes in new directions, such as complete control of geometric aberration up to fifth order, and ultra-high-energy resolution EELS that is allowing vibrational spectroscopy to be carried out in the electron microscope.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.