Abstract

Oligodendroglial injury is a pathological hallmark of many human white matter diseases, including multiple sclerosis (MS) and periventricular leukomalacia (PVL). Critical regulatory mechanisms of oligodendroglia destruction, however, remain incompletely understood. Ceramide, a bioactive sphingolipid pivotal to sphingolipid metabolism pathways, regulates cell death in response to diverse stimuli and has been implicated in neurodegenerative disorders. We report here that ceramide accumulates in reactive astrocytes in active lesions of MS and PVL, as well as in animal models of demyelination. Serine palmitoyltransferase, the rate-limiting enzyme for ceramide de novo biosynthesis, was consistently upregulated in reactive astrocytes in the cuprizone mouse model of demyelination. Mass spectrometry confirmed the upregulation of specific ceramides during demyelination, and revealed a concomitant increase of sphingosine and a suppression of sphingosine-1-phosphate, a potent signaling molecule with key roles in cell survival and mitogenesis. Importantly, this altered sphingolipid metabolism during demyelination was restored upon active remyelination. In culture, ceramide acted synergistically with tumor necrosis factor, leading to apoptotic death of oligodendroglia in an astrocyte-dependent manner. Taken together, our findings implicate that disturbed sphingolipid pathways in reactive astrocytes may indirectly contribute to oligodendroglial injury in cerebral white matter disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.