Abstract

In past studies, we cloned the mouse p gene and its human homolog P, which is associated with oculocutaneous albinism type 2. Both mouse and human genes are expressed in melanocytes and encode proteins predicted to have 12 membrane-spanning domains with structural homology to known ion transporters. We have also demonstrated that the p protein is localized to the melanosomal membrane and does not function as a tyrosine transporter. In this study, immunohistochemistry and confocal microscopy were used to show that the p protein plays an important role in the generation or maintenance of melanosomal pH. Melanosomes (and their precursor compartments) were defined by antiserum directed against the melanosomal marker tyrosinase related protein 1. Acidic vesicles were identified by 3-(2, 4-dinitroanilino)-3'-amino-N-methyldipropylamine incorporation, visualized with anti-dinitrophenol. In C57BL/6+/+ (wild-type) melanocytes, 94.2% of vesicles demonstrated colocalization of tyrosinase related protein 1 and 3-(2, 4-dinitroanilino)-3'-amino-N-methyldipropylamine, indicating that almost all melanosomes or their precursors were acidic. By contrast, only 7%-8% of the staining vesicles in p mutant cell lines (pJ/pJ and pcp/p6H) showed colocalization of tyrosinase related protein 1 and 3-(2,4-dinitroanilino)-3'-amino-N-methyldipropylamine. Thus, without a functional p protein, most melanosomes and their precursors are not acidic. As mammalian tyrosinase activity in situ is apparently dependent on low pH, we postulate that in the absence of a low pH environment brought about by ionic transport mediated by the p protein, tyrosinase activity is severely impaired, leading to the minimal production of melanin that is characteristic of p mutants. Additionally (or alternatively), an abnormal pH may also impair the assembly of the normal melanogenic complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.