Abstract

Hypertrophic mesenteric adipose tissue [htMAT] is involved in the disease progression of Crohn's disease [CD] through expressing proinflammatory adipokines from dysfunctional adipocytes by unknown mechanism. Adipocyte function is affected by dynamic adipose tissue extracellular matrix [ECM] remodelling that is mainly mediated by macrophages, and our study aimed to reveal whether aberrant ECM remodelling was present in CD-htMAT and its effects on adipocyte dysfunction, as well as the mechanism. ECM remodelling was examined in MAT samples from CD patients and controls. Mice with dinitrobenzene sulphonic acid [DNBS]-induced colitis were used in vivo study, and lipopolysaccharide [LPS]-induced remodelling behaviour in macrophages was examined in vitro. Macrophages or TLR4 inhibition were used to analyse ECM remodelling mechanisms and their effects on adipocyte function. Aberrant ECM remodelling: was observed in CD-htMAT, which was characterised by a widened and deformed ECM structure accompanied by dysregulated matrix synthesis and degradation; served as a reservoir for inflammatory factors/cells dominated by macrophages; and was involved in adipocyte dysfunction. In addition, macrophages were the main source of ECM remodelling regulatory factors with activation of Toll-like receptor 4 [TLR4] in htMAT. In vivo, macrophage depletion or TLR4 inhibition largely attenuated mesenteric ECM remodelling while improving mesenteric adipocyte dysfunction during chronic enteritis. In vitro, antagonizing TLR4 significantly inhibited LPS-induced macrophage ECM remodelling behavior. The aberrant ECM remodelling in CD-htMAT contributed to mesenteric adipocyte dysfunction, which may be caused at least partly by TLR4-mediated macrophage remodelling behavior. Inhibiting ECM remodelling may be a potential therapeutic strategy for CD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.