Abstract

We calculate the first homology group of the mapping class group with coefficients in the first rational homology group of the universal abelian ℤ/L-cover of the surface. If the surface has one marked point, then the answer is ℚτ(L), where τ(L) is the number of positive divisors of L. If the surface instead has one boundary component, then the answer is ℚ. We also perform the same calculation for the level L subgroup of the mapping class group. Set HL = H1(Σg; ℤ/L). If the surface has one marked point, then the answer is ℚ[HL], the rational group ring of HL. If the surface instead has one boundary component, then the answer is ℚ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.