Abstract

This paper presents a new approach for detecting algal insurgence in water environments by using remote sensing image series. The designed methodology provides a robust and accurate algorithm as an alternative to typical algal bloom detection methods. In more technical terms, by only assuming as input an image time series, a fully automatic data-driven scheme involving pre-processing and feature extraction procedures is derived, which models a machine intelligent-based classifier capable of detecting algal blooms. Lastly, algal insurgence maps are then produced by passing to the classifier an image taken at an instant of interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.