Abstract

ABSTRACT The ATP-binding cassette (ABC) transporter genes are ubiquitous in the genomes of all vertebrates so far studied. The human ABC transporter superfamily contains 48 genes, subdivided into 7 subfamilies ranging from A to G (based on sequence homology of their nucleotide binding domains). The ABC proteins encoded by these genes are ATP-driven transmembrane pumps, some of which possess the capacity to efflux harmful toxic substances and therefore play a key role in xenobiotic defense. ABC proteins have been evolutionarily conserved from bacteria to humans and multiple gene duplication and deletion events in the ABC genes indicate that the process of gene evolution is still ongoing. Polymorphisms and variations in these genes are linked to variations in expression, function, drug disposition, and drug response. Single nucleotide polymorphisms (SNPs) in these genes could be markers of individual risk for adverse drug reactions or susceptibility to complex diseases. The pharmacogenetics of this unique f...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.