Abstract

By merging single-site typical medium theory with density functional theory we introduce a self-consistent framework for electronic structure calculations of materials with substitutional disorder which takes into account Anderson localization. The scheme and details of the implementation are presented and applied to the hypothetical alloy Li$_{c}$Be$_{1-c}$, and the results are compared with those obtained with the coherent potential approximation. Furthermore we demonstrate that Anderson localization suppresses ferromagnetic order for a very low concentration of (i) carbon impurities substituting oxygen in MgO$_{1-c}$C$_{c}$, and (ii) manganese impurities substituting magnesium in Mg$_{1-c}$Mn$_c$O for the low-spin magnetic configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.