Abstract

The mechanism of the cycloaddition reaction of forming a germanic hetero-polycyclic compound between singlet alkylidenegermylene and ethylene has been investigated with MP2/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD(T)//MP2/6-31G* method. From the surface energy profile, it can be predicted that the dominant reaction pathway for this reaction consists of three steps: the two reactants first form a three-membered ring intermediate INT1 through a barrier-free exothermic reaction of 35.4 kJ/mol; this intermediate then isomerizes to an active four-membered ring product P2.1 via a transition-state TS2.1 with a barrier of 57.6 kJ/mol; finally, P2.1 further reacts with ethylene to form the germanic hetero-polycyclic compound P3, for which the barrier is only 0.8 kJ/mol. The rate of this reaction path considerably differs from other competitive reaction paths, indicating that the cycloaddition reaction has an excellent selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.