Abstract

The influence of impurities on the basal plane stacking fault energy in GaN is investigated using density functional theory. It is found that silicon, indium, magnesium and carbon impurities each reduce the stacking fault energy by introducing changes to the bonding properties of the material. These bonding properties are analysed in terms of Mulliken charges and bond populations. It is found that the reduction in stacking fault energy correlates both with a reduction in the average anion charge and with an increase in the overlap population.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.