Abstract

In this work, we investigate the stabilities of H, B, C, N, O, and Zr atoms at various interstitial sites in hcp-Zr using a first-principles theoretical approach. The formation energy of each interstitial atom at each site in the hcp crystal was determined, and the difference in the energy at different sites were considered as a static energy barrier to predict energetically favored diffusion pathways. Linear and non-linear prediction models for the interstitial formation energy were developed using readily accessible chemical and structural input parameters. We show that a simple linear model predicts the formation energies of the interstitial atoms with an R2 of 97%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.