Abstract

We employ ab initio methods to find stable geometries and to calculate potential energy surfaces and vibrational wavenumbers for sulfuric acid monohydrate. Geometry optimizations are carried out with the explicitly correlated coupled-cluster approach that includes single, double, and perturbative triple excitations (CCSD(T)-F12a) with a valence double-ζ basis set (VDZ-F12). Four different stable geometries are found, and the two lowest are within 0.41 kJ mol(-1) (or 34 cm(-1)) of each other. Vibrational harmonic wavenumbers are calculated at both the density-fitted local spin component scaled second-order Møller-Plesset perturbation theory (DF-SCS-LMP2) with the aug-cc-pV(T+d)Z basis set and the CCSD-F12/VDZ-F12 level. Water O-H stretching vibrations and two highly anharmonic large-amplitude motions connecting the three lowest potential energy minima are considered by limiting the dimensionality of the corresponding potential energy surfaces to small two- or three-dimensional subspaces that contain only strongly coupled vibrational degrees of freedom. In these anharmonic domains, the vibrational problem is solved variationally using potential energy surfaces calculated at the CCSD(T)-F12a/VDZ-F12 level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.