Abstract

A new full-dimensional potential energy surface for the title reaction has been constructed using the modified Shepard interpolation scheme. Energies and derivatives were calculated using the UCCSD(T) method with aug-cc-pVTZ and 6-311++G(3df,2pd) basis sets, respectively. A total number of 30,000 data points were selected from a huge number of molecular configurations sampled by trajectory method. Quantum dynamical calculations showed that the potential energy surface is well converged for the number of data points for collision energy up to 2.5 eV. Total reaction probabilities and integral cross sections were calculated on the present surface, as well as on the ZBB3 and EG-2008 surfaces for the title reaction. Satisfactory agreements were achieved between the present and the ZBB3 potential energy surfaces, indicating we are approaching the final stage to obtain a global potential energy surface of quantitative accuracy for this benchmark polyatomic system. Our calculations also showed that the EG-2008 surface is less accurate than the present and ZBB3 surfaces, particularly in high energy region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.