Abstract
A general scheme is proposed to construct systematically a family of superhard sp3 carbon phases of cold-compressed graphite by combining hexagonal to cubic diamond (named as X-Carbon). Based on calculations employing density functional theory (DFT), we find that our currently proposed X-carbon can occur by compressing disordered graphite, and the X-carbon is more stable in energy than the previously proposed M, Z, W, bct-C4, P allotropes. Thus, the X-carbon is predicted to be the transition of cold-compressed graphite. The results show that the simulated x-ray diffraction pattern, Vickers hardness and bulk modulus of X-Carbon match well with the experimental data (Mao et al Science 302, 425 (2003)). These new phases are transparent superhard materials with a large hardness and wide electronic band gaps comparable to cubic diamond.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.