Abstract

The auxiliary‐field quantum Monte Carlo (AFQMC) method provides a computational framework for solving the time‐independent Schrödinger equation in atoms, molecules, solids, and a variety of model systems. AFQMC has recently witnessed remarkable growth, especially as a tool for electronic structure computations in real materials. The method has demonstrated excellent accuracy across a variety of correlated electron systems. Taking the form of stochastic evolution in a manifold of nonorthogonal Slater determinants, the method resembles an ensemble of density‐functional theory (DFT) calculations in the presence of fluctuating external potentials. Its computational cost scales as a low‐power of system size, similar to the corresponding independent‐electron calculations. Highly efficient and intrinsically parallel, AFQMC is able to take full advantage of contemporary high‐performance computing platforms and numerical libraries. In this review, we provide a self‐contained introduction to the exact and constrained variants of AFQMC, with emphasis on its applications to the electronic structure of molecular systems. Representative results are presented, and theoretical foundations and implementation details of the method are discussed.This article is categorized under:Electronic Structure Theory > Ab Initio Electronic Structure MethodsStructure and Mechanism > Computational Materials ScienceComputer and Information Science > Computer Algorithms and Programming

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.