Abstract

AbstractNonempirical equations of state of compressed rare gas crystals Ne, Ar, Kr, and Xe are studied on the basis of the earlier-obtained ab initio adiabatic potential. The paired and three-body short-range repulsive potentials are calculated by the Hartree–Fock method in the basis of localized functions with their exact mutual orthogonalization and do not contain experimentally determined parameters. The theory is compared with the experiment and results of calculations by other authors. Analysis of the proposed equations of state for large compressions has shown the importance of taking into account the three-body interaction and the terms of the higher order in the overlap integral in compressed neon and the sufficiency of the quadratic approximation in the orthogonalization of functions in heavy rare gas crystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.