Abstract

As a well-known multi-label classification method, the performance of ML-KNN may be affected by the uncertainty knowledge from samples. The rough set theory acts as an effective tool for data uncertainty analysis, which can identify the samples easy to cause misclassification in the learning process. In this paper, a hybrid framework by fusing rough sets with ML-KNN for multi-label learning is proposed, whose main idea is to depict easy misclassified samples by rough sets and to measure the discernibility of attributes for such samples. First, a rough set model titled NRFD_RS based on neighborhood relations and fuzzy decisions is proposed for multi-label data to find the heterogeneous sample pairs generated from the boundary regions of each label. Then, the weight of an attribute is defined by evaluating its discernibility to those heterogeneous sample pairs. Finally, a weighted HEOM distance is reconstructed and utilized to ML-KNN. Comprehensive experimental results with fourteen public multi-label data sets, including ten regular-scale and four larger-scale data sets, verify the effectiveness of the proposed framework relative to several state-of-the-art multi-label classification methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.