Abstract

An even factor in a digraph is a vertex-disjoint collection of directed cycles of even length and directed paths. An even factor is called independent if it satisfies a certain matroid constraint. The problem of finding an independent even factor of maximum size is a common generalization of the nonbipartite matching and matroid intersection problems. In this paper, we present a primal-dual algorithm for the weighted independent even factor problem in odd-cycle-symmetric weighted digraphs. Cunningham and Geelen have shown that this problem is solvable via valuated matroid intersection. Their method yields a combinatorial algorithm running in O(n 3 γ + n 6 m) time, where n and m are the number of vertices and edges, respectively, and γ is the time for an independence test. In contrast, combining the weighted even factor and independent even factor algorithms, our algorithm works more directly and runs in O(n 4 γ + n 5) time. The algorithm is fully combinatorial, and thus provides a new dual integrality theorem which commonly extends the total dual integrality theorems for matching and matroid intersection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.