Abstract
Tool wear is one of the important indicators to reflect the health status of a machining system. In order to obtain tool’s wear status, tool condition monitoring (TCM) utilizes advanced sensor techniques, hoping to find out the wear status through those sensor signals. In this paper, a novel weighted hidden Markov model (HMM)-based approach is proposed for tool wear monitoring and tool life prediction, using the signals provided by TCM techniques. To describe the dynamic nature of wear evolution, a weighted HMM is first developed, which takes wear rate as the hidden state and formulates multiple HMMs in a weighted manner to include sufficient historical information. Explicit formulas to estimate the model parameters are also provided. Then, a particular probabilistic approach using the weighted HMM is proposed to estimate tool wear and predict tool’s remaining useful life during tool operation. The proposed weighted HMM-based approach is tested on a real dataset of a high-speed CNC milling machine cutters. The experimental results show that this approach is effective in estimating tool wear and predicting tool life, and it outperforms the conventional HMM approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.