Abstract

An ultrasonic attenuation-versus-frequency curve can serve as an “ultrasonic signature” which may be correlated with microstructural properties of interest such as grain size in metals or porosity level in composites. Attenuation also plays a role in ultrasonic inspections and is consequently a key input into many inspection simulation models. A web-based self-tutorial on practical attenuation measurements is under development. The focus is on pulse/echo immersion measurements made using a broadband transducer to deduce attenuation within the transducer’s useable bandwidth. Two approaches are considered: one using a calibration specimen having a known attenuation curve, and one without. In the first approach a back-wall (BW) echo in the calibration specimen is compared with a BW echo in the test specimen. In the second approach various BW reverberation echoes in the test specimen are compared with one another or with a front-wall echo. The web-based tutorial incorporates three classes of materials. The first includes written documentation and videos describing the measurement setups, the data-acquisition and analysis procedures, and the underlying models use to analyze the raw UT data. Secondly, general purpose “stand-alone” data-analysis software is supplied that is designed to be used with any ultrasonic inspection system that can output A-scan data as a text file. This includes both FORTRAN software and Excel spreadsheet calculators that accept A-scan text data as inputs. Thirdly, we supply demonstration software where the data acquisition and analysis procedures are integrated with a specific class of commercial ultrasonic test instruments, namely those running UTEX Winpect control software. This paper provides an overview of the measurement methods and tutorial materials. We also present early results from round-robin trials in which selected metal and composite specimens are being sent to participating partners for attenuation measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.