Abstract

A novel wearable vibrotactile system is proposed in this article to enhance the performance of teleoperation robot systems. Using a wearable vibrotactile glove, the proposed system guides the operator in the master-slave control through a vibrotactile-visual guidance method. Based on sensory substitution, the vibrotactile-visual combined guidance method combines vibration stimuli and visual feedback to substitute the virtual guidance force. A vibrotactile potential field is constructed in the workspace of the master-operator to calculate the frequency of the vibration stimulus. To provide vibration stimuli, a novel vibrotactile glove is designed and manufactured based on the layout of the sensitive region of human hand. As the human hand is unable to discriminate vibration stimuli of all frequencies, the vibration stimulus is discretization according to the result of the vibration discriminability experiment. At last, two contrast experiments in obstacle-free and obstacle-existing environments are conducted to verify the feasibility and effectiveness of the wearable vibrotactile system. The results show that this wearable vibrotactile system is an effective solution for guiding the operators in teleoperation and virtual environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.