Abstract
In this paper, we introduce a weak maximum principle-based approach to input-to-state stability (ISS) analysis for certain nonlinear partial differential equations (PDEs) with boundary disturbances. Based on the weak maximum principle, a classical result on the maximum estimate of solutions to linear parabolic PDEs has been extended, which enables the ISS analysis for certain {}{nonlinear} parabolic PDEs with boundary disturbances. To illustrate the application of this method, we establish ISS estimates for a linear reaction-diffusion PDE and a generalized Ginzburg-Landau equation with {}{mixed} boundary disturbances. Compared to some existing methods, the scheme proposed in this paper involves less intensive computations and can be applied to the ISS analysis for a {wide} class of nonlinear PDEs with boundary disturbances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.