Abstract

In this paper, a weak Local Linearization scheme for Stochastic Differential Equations (SDEs) with multiplicative noise is introduced. First, for a time discretization, the solution of the SDE is locally approximated by the solution of the piecewise linear SDE that results from the Local Linearization strategy. The weak numerical scheme is then defined as a sequence of random vectors whose first moments coincide with those of the piecewise linear SDE on the time discretization. The scheme is explicit, preserves the first two moments of the solution of SDEs with linear drift and diffusion coefficients in state and time, and inherits the mean-square stability or instability that such solution may have. The rate of convergence is derived and numerical simulations are presented for illustrating the performance of the scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.