Abstract

This paper introduces a numerical scheme for time harmonic Maxwell's equations by using weak Galerkin (WG) finite element methods. The WG finite element method is based on two operators: discrete weak curl and discrete weak gradient, with appropriately defined stabilizations that enforce a weak continuity of the approximating functions. This WG method is highly flexible by allowing the use of discontinuous approximating functions on arbitrary shape of polyhedra and, at the same time, is parameter free. Optimal-order of convergence is established for the weak Galerkin approximations in various discrete norms which are either $H^1$-like or $L^2$ and $L^2$-like. An effective implementation of the WG method is developed through variable reduction by following a Schur-complement approach, yielding a system of linear equations involving unknowns associated with element boundaries only. Numerical results are presented to confirm the theory of convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.