Abstract

This research explores the automated detection of surface defects that fall across two different background textures in a light-emitting diode (LED) chip. Water-drop defects, commonly found on chip surface, impair the appearance of LEDs as well as their functionality and security. Automated inspection of a water-drop defect is difficult because the defect has a semi-opaque appearance and a low intensity contrast with the rough exterior of the LED chip. Moreover, the blemish may fall across two different background textures, which further increases the difficulties of defect detection. We first use the one-level Haar wavelet transform to decompose a chip image and extract four wavelet characteristics. Then, the Multi-Layer Perceptron (MLP) neural network with back-propagation (BPN) algorithm is applied to integrate the multiple wavelet characteristics. Finally, the wavelet-based neural network approach judges the existence of water-drop defects. Experimental results show that the proposed method achieves an above 96.8% detection rate and a below 4.8% false alarm rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.