Abstract

A new wavelet-Galerkin method is developed to solve the population balance equations which arise in the description of particle-size distribution of a continuous, mixed-suspension, mixed-product removal crystallizer with taking account of the effect of particle breakage. The class of Daubechies wavelets, which is both compactly supported and orthonormal, is adopted as the Galerkin bases. Some elegant results concerned with the exact evaluation of functions on wavelets and their derivatives and integrals are derived. These results along with the 2-scale relation which defines the wavelet bases make the Galerkin method feasible for the solution of population balance equations containing a scaled argument.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.