Abstract

Herein, we present a stable water-soluble cobalt complex supported by a dianionic 2,2'-([2,2'-bipyridine]-6,6'-diyl)bis(propan-2-ol) ligand scaffold, which is a rare example of a high-oxidation species, as demonstrated by structural, spectroscopic and theoretical data. Electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements revealed that the CoIV center of the mononuclear complex in the solid state resides in the high spin state (sextet, S=5/2). The complex can effectively catalyze water oxidation via a single-site water nucleophilic attack pathway with an overpotential of only 360 mV in a phosphate buffer with a pH of 6. The key intermediate toward water oxidation was speculated based on theoretical calculations and was identified by in situ spectroelectrochemical experiments. The results are important regarding the accessibility of high-oxidation state metal species in synthetic models for achieving robust and reactive oxidation catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.