Abstract

Abstract Objectives Neuroinflammation contributes to brain-aging which may be mitigated by anti-inflammatory oxylipins. Based on our previous findings that a 6% walnut-enriched diet alone, and additional physical activity (PA), enhanced cognition in 18 months old NMRI, we now investigated the effects of this diet on oxylipin- and inflammatory marker levels in liver and brain. Methods 18 months and 3 months old female NMRI mice were fed with a 6% walnut-enriched diet. Oxylipins were determined in brain and liver sections using LC-MS. Expression of IL1β gene was determined by qRT-PCR. Results The walnut diet compensates for the age related increase in IL1β gene expression in the liver of mice, whereas expression in the brain was not affected. Basal levels of oxylipins in brain and liver samples isolated from young mice were generally lower compared to aged mice. The walnut diet further increased oxylipin levels of walnut specific fatty acids in liver and brain of aged mice. Enrichment of linoleic acid (LA) and α-linolenic acid (ALA) derived oxylipin levels were quantitatively higher in the liver compared to the brain (P < 0.0001). Hydroxy-oxylipins (HO) based on fatty acid LA were significantly increased in brain (P < 0.001) and liver (P < 0.0001) compared to control mice, while ALA based HO were only detected in the brains of walnut fed mice. The walnut diet in combination with physical activity (PA) reduced ARA based oxylipin levels (P < 0.05). Across all groups, concentrations of prostanoids were higher in the brain as compared to liver (P < 0.001). In the liver, walnuts tended to decrease PGD2 and TxB2 levels while increasing 6-keto PGF1α. The latter, as well as TxB2 tended to be decreased in the brain. Other ARA based prostanoids were unaffected. Effects of PA were contrary to each other, tending to increase ARA based prostanoids in the liver while decreasing them in the brain. PA further enhanced this effect in the brain, but tended to increase the inflammatory response in the liver. Conclusions A walnut diet differentially affects the oxylipin profile of liver and brain in aged mice. Production of oxylipins based on walnut fatty acids is generally increased. Attenuation of age-related, chronic inflammation in might be one of walnut's benefits and may contribute to a healthier aging of the brain. Funding Sources Research was supported by grants from California Walnut Commission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.