Abstract

We studied the reaction of phenyl radicals (C(6)H(5)) with 1,3-butadiene (H(2)CCHCHCH(2)) exploiting a high temperature chemical reactor under combustion-like conditions (300 Torr, 873 K). The reaction products were probed in a supersonic beam by utilizing VUV radiation from the Advanced Light Source and by recording the experimental PIE curves at mass-to-charge ratios of m/z = 130 (C(10)H(10)(+)), 116 (C(9)H(8)(+)), and 104 (C(8)H(8)(+)). Our data suggest that the atomic hydrogen (H), methyl (CH(3)), and vinyl (C(2)H(3)) losses are open with estimated branching ratios of about 86 ± 4%, 8 ± 2%, and 6 ± 2%, respectively. The isomer distributions were probed further by fitting the experimentally recorded PIE curves with a linear combination of the PIE curves of individual C(10)H(10), C(9)H(8), and C(8)H(8) isomers. These fits indicate the formation of three C(10)H(10) isomers (trans-1,3-butadienylbenzene, 1,4-dihydronaphthalene, 1-methylindene), three C(9)H(8) isomers (indene, phenylallene, 1-phenyl-1-methylacetylene), and a C(8)H(8) isomer (styrene). A comparison with results from recent crossed molecular beam studies of the 1,3-butadiene-phenyl radical reaction and electronic structure calculations suggests that trans-1,3-butadienylbenzene (130 amu), 1,4-dihydronaphthalene (130 amu), and styrene (104 amu) are reaction products formed as a consequence of a bimolecular reaction between the phenyl radical and 1,3-butadiene. 1-Methylindene (130 amu), indene (116 amu), phenylallene (116 amu), and 1-phenyl-1-methylacetylene (116 amu) are synthesized upon reaction of the phenyl radical with three C(4)H(6) isomers: 1,2-butadiene (H(2)CCCH(CH(3))), 1-butyne (HCCC(2)H(5)), and 2-butyne (CH(3)CCCH(3)); these C(4)H(6) isomers can be formed from 1,3-butadiene via hydrogen atom assisted isomerization reactions or via thermal rearrangements of 1,3-butadiene involving hydrogen shifts in the high temperature chemical reactor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.