Abstract
We present a voltage-scalable and process-variation resilient memory architecture, suitable for MPEG-4 video processors such that power dissipation can be traded for graceful degradation in The key innovation in our proposed work is a hybrid memory array, which is mixture of conventional 6T and 8T SRAM bit-cells. The fundamental premise of our approach lies in the fact that human visual system (HVS) is mostly sensitive to higher order bits of luminance pixels in video data. We implemented a preferential storage policy in which the higher order luma bits are stored in robust 8T bit-cells while the lower order bits are stored in conventional 6T bit-cells. This facilitates aggressive scaling of supply voltage in memory as the important luma bits, stored in 8T bit-cells, remain relatively unaffected by voltage scaling. The not-so-important lower order luma bits, stored in 6T bit-cells, if affected, contribute insignificantly to the overall degradation in output video quality. Simulation results show average power savings of up to 56%, in the hybrid memory array compared to the conventional 6T SRAM array implemented in 65nm CMOS. The area overhead and maximum output quality degradation (PSNR) incurred were 11.5% and 0.56 dB, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.