Abstract
Complementary to traditional approaches that focus on transceiver design for bringing the best out of unstable, lossy fading channels, one radical development in wireless communications that has recently emerged is to pursue a smart radio environment by using software-defined materials or programmable metasurfaces for establishing favorable propagation conditions. This article portraits a vision of communication superhighways enabled by surface wave (SW) propagation on intelligent surfaces for future smart radio environments. The concept differs from the mainstream efforts of using passive elements on a large surface for bouncing off radio waves intelligently toward intended user terminals. In the proposed SW vision, energy efficiency can be much higher, due to more desirable propagation characteristics compared to open-space radio propagation. The fact that SW is inherently confined to the smart surface not only greatly simplifies the task of interference management, but also makes possible exceptionally localized high-speed interference-less data access. We shall outline the opportunities and challenges arising from the SW paradigm. We shall also attempt to shed light on several key enabling technologies that make this realizable. One important technology which will be discussed is a software-controlled fluidic waveguiding architecture that permits dynamic creation of high-throughput data highways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.